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We considered the driven damped harmonic oscillator and resonance in detail.  The 
response to a cosine (cos(𝜔𝑡)) driving force in the long-term limit is: 𝑥(𝑡) = 𝐴 cos(𝜔𝑡 − 𝛿), 
where 𝜔 is the frequency of the driving force.  This represents the long-time persistent 
solution of the motion.  It shows that the oscillator eventually adopts the same frequency as 
the driving force.   

The amplitude function 𝐴 = 𝑓0

��𝜔0
2−𝜔2�2+(2𝛽𝜔)2

 shows a resonant response.  As a function 

of frequency 𝜔 at fixed natural frequency 𝜔0, there is a maximum amplitude of the persistent 
motion response when the driving frequency is equal to 𝜔2 = �𝜔02 − 2𝛽2.  The quality 
factor of the resonance is a measure of how large and sharply peaked the amplitude response 
looks.  It is defined as the ratio of the frequency at which there is peak energy (or power) 
amplitude over the frequency bandwidth known as the full-width at half maximum (FWHM).  
The FWHM is defined as the frequency width at the half-power height.  The quality factor, or 
𝑄, is given by 𝑄 = 𝜔0/2𝛽.  As the dissipation (parameterized by 𝛽) decreases, the quality 
factor grows. 

The phase evolution through resonance goes from 0 well below resonance to 𝜋 well 
above resonance, with 𝛿 = 𝜋/2 exactly at resonance.  The slope of 𝛿(𝜔) at resonance is 
1
𝛽

= 2𝑄/𝜔0. 

We considered several examples of resonant phenomena in mechanical and electrical 
systems, as noted in the Supplementary Material.  One interesting example was that of crowd 
synchrony on the Millennium bridge in London.  The pedestrians on the bridge acted as a set 
of periodic driving forces on the bridge position.  The bridge acted back on the pedestrians in 
a manner that caused their motion to synchronize and amplify the oscillations of the bridge.  
This led to closing of the bridge, and modifications to the structure to increase the damping 
force on the bridge. 

The equation of motion �̈� + 2𝛽�̇� + 𝜔0
2𝑥 = 𝑓0 cos(𝜔𝑡) involves a linear operator 

𝐿 = 𝑑2

𝑑𝑡2
+ 2𝛽 𝑑

𝑑𝑡
+ 𝜔0

2 acting on the displacement function 𝑥(𝑡) and relating it to the driving 
force 𝑓(𝑡) as 𝐿 𝑥(𝑡) = 𝑓(𝑡).  The linearity property means that the operator can operate on 
any number of solutions at the same time: 𝐿 [𝛼1𝑥1(𝑡) + 𝛼2𝑥2(𝑡)] = 𝛼1𝑓1(𝑡) + 𝛼2𝑓2(𝑡), for 
arbitrary weighting coefficients 𝛼1 and 𝛼2.  This property allows us to consider an arbitrary 
periodic driving force 𝑓(𝑡 + 𝑇) = 𝑓(𝑡), where 𝑇 is the period of the driving force, as being 
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made up of an infinite superposition of cosine driving forces: 𝑓(𝑡) = ∑ 𝑓𝑛  cos(𝑛𝜔𝑡)∞
𝑛=0 , 

where we assume that a Fourier cosine expansion is adequate to describe the periodic driving 
force.  The linearity of the problem allows us to write down the general solution as 𝑥(𝑡) =
∑ 𝐴𝑛  cos(𝑛𝜔𝑡 − 𝛿𝑛)∞
𝑛=0 , with 𝐴𝑛 = 𝑓𝑛/�(𝜔02 − (𝑛𝜔)2)2 + 4𝛽2𝑛2𝜔2 and 𝛿𝑛 =

tan−1 � 2𝛽𝑛𝜔
𝜔0
2−(𝑛𝜔)2�.  With this we can describe the motion of the driven system subjected to 

more general driving forces, such as a triangle wave, periodic pulsed driving forces, etc. 

We moved on to the question of how to make Newton’s Laws of motion work in non-
inertial reference frames.  This turns out to be useful for a number of reasons.  First we often 
insist on using coordinate systems that are non-inertial, such as the (Latitude, Longitude, 
Altitude) “GPS” reference frame attached to the surface of the rotating earth.  Secondly, 
some physical problems are easier to attack when seen from non-inertial reference frames, 
such as the “co-rotating frame” rotating at the Larmor precession frequency in NMR.  
Another example is the description of small oscillations about an equilibrium point in a non-
inertial reference frame. 

We considered first the case of a reference frame undergoing constant linear acceleration 
𝐴.  By comparing a description of the motion of an object as seen from an inertial reference 
frame to that same object seen from a non-inertial reference frame, we concluded that 
Newton’s second law in the non-inertial reference frame must be written as 𝑚�̈� = �⃗�𝑛𝑒𝑡 −
𝑚𝐴.  The “inertial force”  �⃗�𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = −𝑚𝐴 must be added to the net force to make the 
equation of motion work in the non-inertial frame.  We experience this inertial force as a 
backwards force when sitting in an aircraft that is accelerating down the runway for takeoff. 

Making Newton’s second law work in a rotating reference frame is more of a challenge.  
Consider a rigid body moving through space.  A rigid body is one in which the distances 
between the particles do not change during the motion.  We can start by describing the 
motion of the center of mass 𝑅�⃗ 𝐶𝑀(𝑡) and treat it as the motion of a particle of mass 𝑀 equal 
to the total mass of the object.  With an extended rigid body we have the additional degree of 
freedom that the object can also be rotating or tumbling.  We can treat the center of mass as a 
stationary point during the motion.  Euler’s theorem says that the most general motion of that 
object is a rotation about an axis going through the center of mass.  This rotational motion is 
specified by a direction of the rotation axis and the magnitude of the rotation rate.  Rotation 
is specified by an axis of rotation 𝑢� , and a rate 𝜔, so that 𝜔��⃗ = 𝜔𝑢� .  The rotation axis goes 
through the fixed point in the object.  We found that the linear velocity of a particle at 

location 𝑟 inside or on the object is given by �⃗� = 𝜔��⃗ × 𝑟.  In other words 𝑑𝑟
𝑑𝑡

= 𝜔��⃗ × 𝑟, or in 

general for any vector 𝑒 in the rigid body 𝑑𝑒
𝑑𝑡

= 𝜔��⃗ × 𝑒. 


